
Research integrity in statistics: (mis)reporting and researcher degrees of freedom

Marjan Bakker; August 25, 2021; Amsterdam

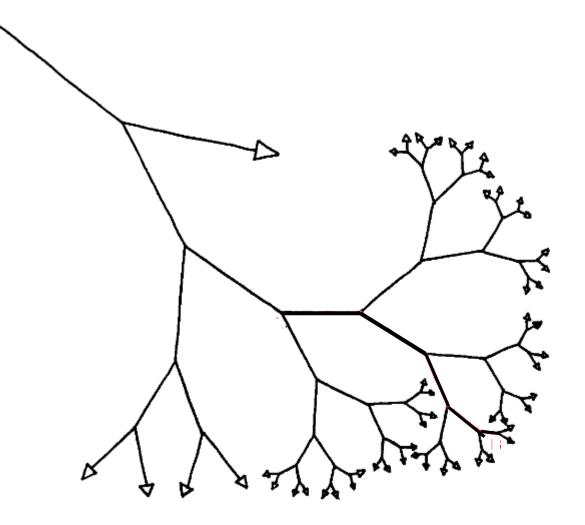
Understanding Society

Choices

... or correct, or winsorize, or use a different statistical technique, or ...

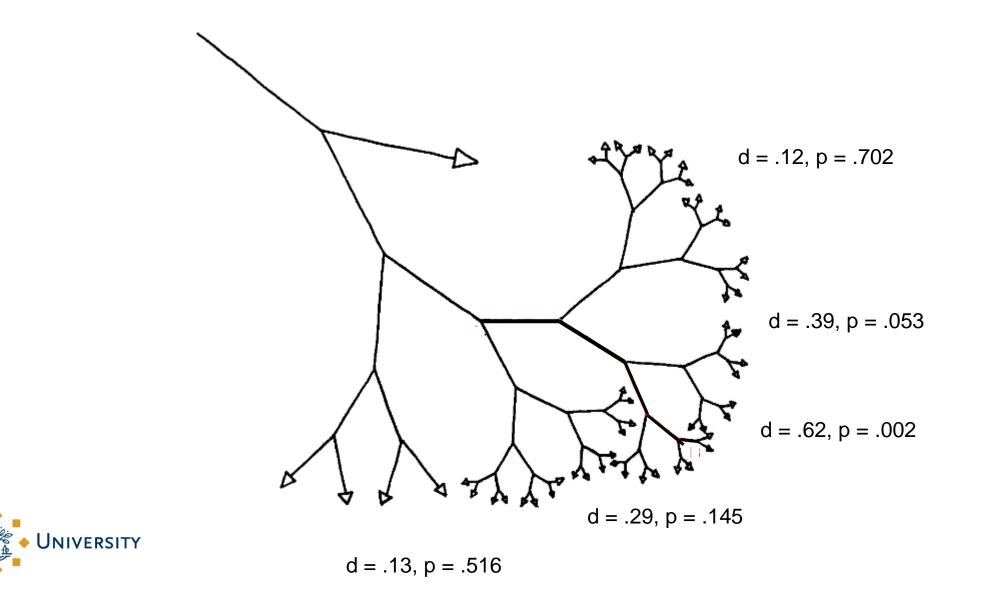
Researcher Degrees of Freedom

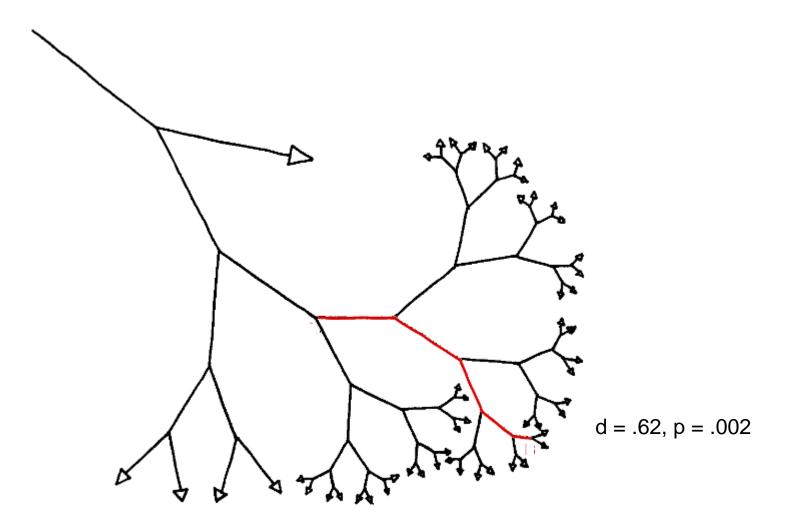
Code	Related	Type of degrees of freedom
ypothesizing		
1	R6	Conducting explorative research without any hypothesis
2		Studying a vague hypothesis that fails to specify the direction of the effect
Design		
D1	A8	Creating multiple manipulated independent variables and conditions
D2	A10	Measuring additional variables that can later be selected as covariates, independent variables, mediators, or moderators
D3	A5	Measuring the same dependent variable in several alternative ways
D4	A7	Measuring additional constructs that could potentially act as primary outcomes
D5	A12	Measuring additional variables that enable later exclusion of participants from the analyses (e.g., awareness or manipulation checks
D6		Failing to conduct a well-founded power analysis
D7	C4	Failing to specify the sampling plan and allowing for running (multiple) small studies
Collection		
C1		Failing to randomly assign participants to conditions
C2		Insufficient blinding of participants and/or experimenters
C3		Correcting, coding, or discarding data during data collection in a non-blinded manner
C4	D7	Determining the data collection stopping rule on the basis of desired results or intermediate significance testing
malyses		
A1		Choosing between different options of dealing with incomplete or missing data on ad hoc grounds
A2		Specifying pre-processing of data (e.g., cleaning, normalization, smoothing, motion correction) in an ad hoc manner
A3		Deciding how to deal with violations of statistical assumptions in an ad hoc manner
A4		Deciding on how to deal with outliers in an ad hoc manner
A5	D3	Selecting the dependent variable out of several alternative measures of the same construct
A6		Trying out different ways to score the chosen primary dependent variable
A7	D4	Selecting another construct as the primary outcome
A8	D1	Selecting independent variables out of a set of manipulated independent variables
49	D1	Operationalizing manipulated independent variables in different ways (e.g., by discarding or combining levels of factors)
A10	D2	Choosing to include different measured variables as covariates, independent variables, mediators, or moderators
A11		Operationalizing non-manipulated independent variables in different ways
A12	D5	Using alternative inclusion and exclusion criteria got selecting participants in analyses
A13		Choosing between different statistical models
A14		Choosing the estimation method, software package, and computation of SEs
A15		Choosing inference criteria (e.g., Bayes factors, alpha level, sidedness of the test, corrections for multiple testing)
Reporting		
R1		Failing to assure reproducibility (verifying the data collection and data analysis)
R2		Failing to enable replication (re-running of the study)
R3		Failing to mention, misrepresenting, or misidentifying the study preregistration
R4		Failing to report so-called "failed studies" that were originally deemed relevant to the research question
R5		Misreporting results and <i>p</i> -values
R6	T1	Presenting exploratory analyses as confirmatory (HARKing)


Wicherts et al. (2016)

Researcher Degrees of Freedom

- Choosing between different options of dealing with incomplete or missing data on ad hoc grounds
- Specifying pre-processing of data (e.g., cleaning, normalization, smoothing, motion correction) in an ad hoc manner
- Deciding how to deal with violations of statistical assumptions in an ad hoc manner
- Deciding on how to deal with outliers in an ad hoc manner
- Selecting the dependent variable out of several alternative measures of the same construct
- Trying out different ways to score the chosen primary dependent variable
- Selecting another construct as the primary outcome
- Selecting independent variables out of a set of manipulated independent variables
- Operationalizing manipulated independent variables in different ways (e.g., by discarding or combining levels of factors)
- Choosing to include different measured variables as covariates, independent variables, mediators, or moderators
- Operationalizing non-manipulated independent variables in different ways
- Using alternative inclusion and exclusion criteria got selecting participants in analyses
- Choosing between different statistical models
- Choosing the estimation method, software package, and computation of SEs
- Choosing inference criteria (e.g., Bayes factors, alpha level, sidedness of the test, corrections for multiple testing)


Garden of forking paths


Garden of forking paths

TILBURG +

7

Garden of forking paths

Questionable Research Practices

John et al. (2012)

I have at least once	(self admittance rate)
 Failing to report all of a study's dependent measures 	(63.4%)
 Deciding whether to collect more data after looking to see w 	hether the
results were significant	(55.9%)
 Failing to report all of a study's conditions 	(27.7%)
 Stopping collecting data if the result is already significant 	(15.6%)
 'Rounding off' a p value (e.g. p = .054, report p < .05) 	(22.0%)
 Selectively reporting studies that 'worked' 	(45.8%)
 Deciding whether to exclude data after looking at the impact 	of doing so (38.2%)
 Reporting an unexpected finding as having been predicted finding 	rom the start (27.0%)

Simmons, Nelson, and Simonsohn (2011)

Listening to The Beatles makes you younger!

Increase in Type I error rate

Type I error: incorrect rejection of a true null hypothesis.

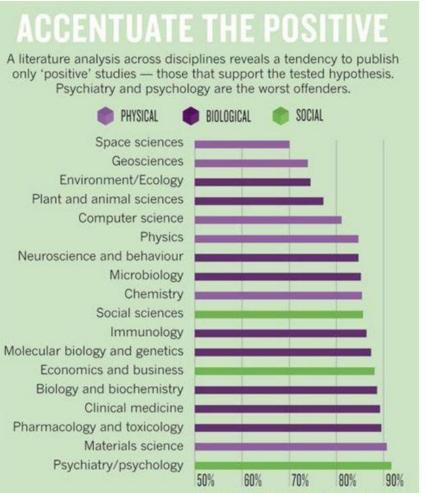
Table 1. Likelihood of Obtaining a False-Positive Result

	Significance level			
Researcher degrees of freedom	p < .1	þ < .05	þ < .01	
Situation A: two dependent variables (r = .50)	17.8%	9.5%	2.2%	
Situation B: addition of 10 more observations per cell	14.5%	7.7%	1.6%	
Situation C: controlling for gender or interaction of gender with treatment	21.6%	11.7%	2.7%	
Situation D: dropping (or not dropping) one of three conditions	23.2%	12.6%	2.8%	
Combine Situations A and B	26.0%	14.4%	3.3%	
Combine Situations A, B, and C	50.9%	30.9%	8.4%	
Combine Situations A, B, C, and D	81.5%	60.7%	21.5%	

Many published null results

- Too many positive findings
- Failure to replicate

NATURE | NEWS


Over half of psychology studies fail reproducibility test

Largest replication study to date casts doubt on many published positive results.

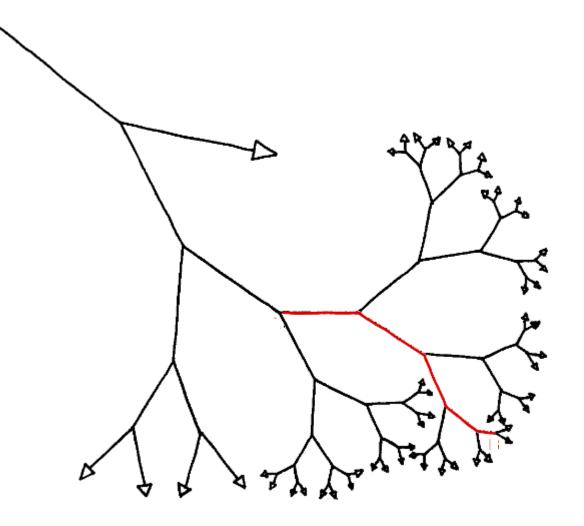
Monya Baker

27 August 2015

Rights & Permissions

~

Proportion of papers supporting tested hypothesis



- Preregistration: specifying your research plan in advance of your study and submitting it to a registry
- Clear distinction between two modes of research:
 - Confirmatory testing (data is collected to test predictions)
 - Prediction
 - Exploratory analysis (data is used to generate predictions that could be tested in the future)
 - Postdiction

Register your choices

Registered Reports

- Registered reports
 - Submit pre-registration to journal for review: introduction and method section
 - Receive 'in principle acceptance'
 - Submit paper: results and discussion reviewed for correspondence with original introduction and method
 - Benefits:
 - No incentive for significant results
 - Reviewers can contribute to improving methods

Different formats

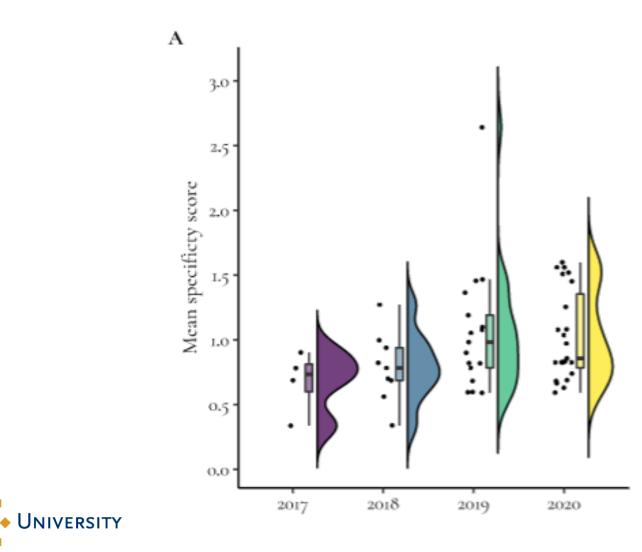
- Overview on: <u>https://osf.io/zab38/wiki/home/</u>
 - OSF prereg
 - As predicted
 - Open ended
 - Replication recipe
 - Qualitative research
 - Secondary Data
 - Cognitive Modeling
 - fMRI

Most extensive template Only 8 questions Snapshot of current project with time stamp For replication studies Haven & Van Grootel, ... Van den Akker et al. (2019) Cruwell & Evans (2019) Flannery (2018)

From theory to practice

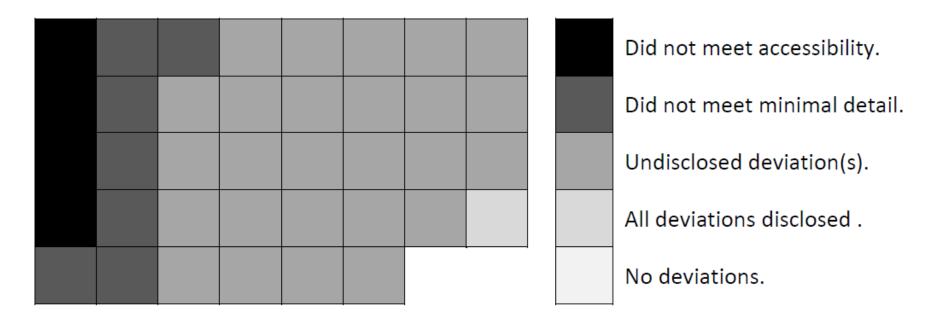
- Preregistration
 - The number of preregistrations at OSF has approximately doubled yearly with 38 in 2012 to 36,675 by the end of 2019
 - Preregistration Challenge
 - Preregistration badges
 - 75 journals award badges

- Registered reports
 - Over 300 journals offer this format



... and to Research

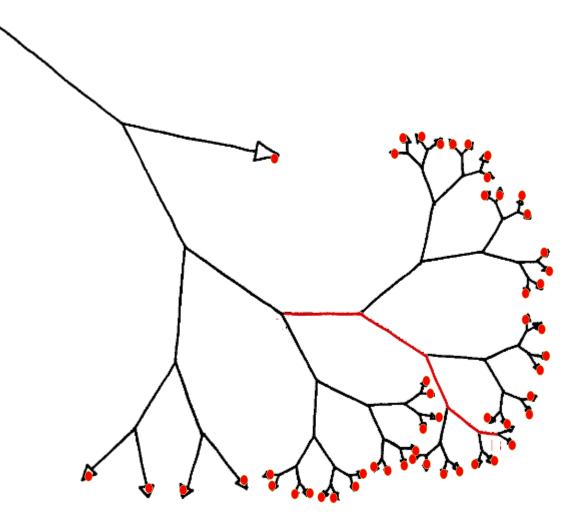
- Do preregistered studies prevent the opportunistic use of researcher degrees of freedom?
 - Comparison of Prereg Challenge Registrations (extensive guidelines) with Standard Pre-Data Collection Registrations (almost no guidelines)
 - Are they specific, precise, and exhaustive
- Results:
 - Prereg Challenge Registrations prevent more opportunistic use of researcher degrees of freedom.
 - However, still room for the opportunistic use of researcher degrees of freedom.
 - For example: often number of hypotheses was not clear.


... and to Research

Research: adherence to preregistered plans

Claesen, A., Gomes, S. L. B. T., Tuerlinckx, F., & vanpaemel, w. (2019, May 9). Preregistration: Comparing Dream to Reality. https://doi.org/10.31234/osf.io/d8wex

Figure 1. Assessment on preregistration level. Each cell represents one preregistration plan. None of the plans was adhered to without deviations.



- Preregistration: specifying your research plan in advance of your study and submitting it to a registry
- Multiverse analysis: check all paths

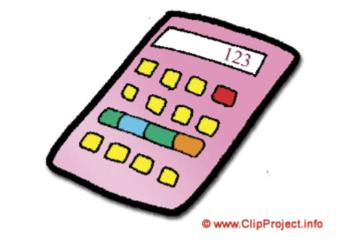
... check all paths!

Multiverse analysis

- Sensitivity analysis
 - Only a few choices are tested independently
 - E.g., with and without outlier removal
- Specification Curve (Simonsohn, Simmons, & Nelson, 2019)
 - Focus on graphical display of results
- Multiverse analysis (Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016)

Solutions

- Preregistration: specifying your research plan in advance of your study and submitting it to a registry
- Multiverse analysis: check all paths
- Be transparent about all the paths you went on
 - Open lab notebooks


• Humans make errors

Reporting of Statistical Results

Simple effects analyses within each of the two levels of valence were conducted, revealing a significant main effect of subtype upon the proportion of positive words falsely recalled, F(2, 65) = 3.02, p = 05, $\eta_p^2 = .09$,

p = .06

Occurrence of errors

- Half of the papers showed an error
- 1 in 8 showed a gross error (an error that affected the statistical conclusion

(Bakker & Wicherts, 2011)

Reporting Errors in Other Fields

- Garcia-Berthou & Alcaraz (2004)
 - Nature and Britisch Medical Journal
 - 38% and 25% of the articles contained at least one error.
- Berle and Starcevic (2007)
 - Two psychiatry journals
 - 36% of the articles contained at least one error

Reporting Errors

statch=ck

(Epskamp & Nuijten, 2014)

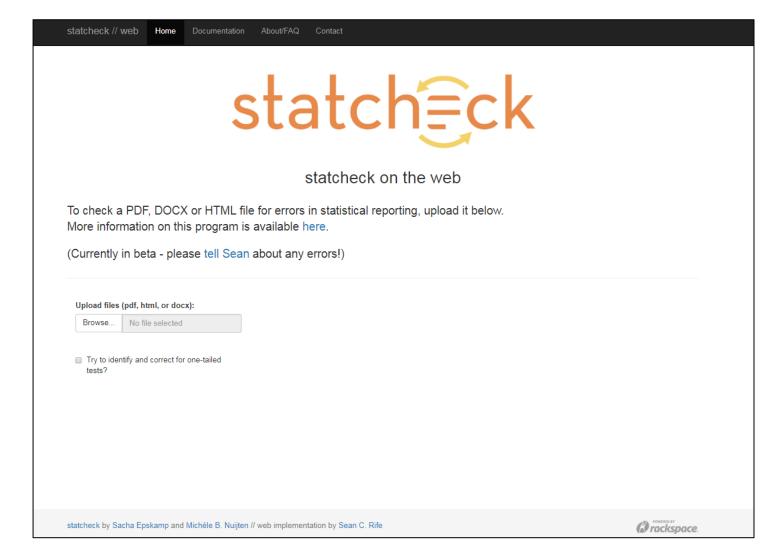
- Half of the papers in psychology contain at least one inconsistent *p*-value
- In 1 in 8 papers, this may have affected the conclusion

Reported *p* < .05 and computed p > .05, or vice versa

(Nuijten et al., 2016)

Questionable Research Practices

John et al. (2012)


I have at least once (self admi		
 Failing to report all of a study's dependent measures 	(63.4%)	
 Deciding whether to collect more data after looking to see w 	hether the	
results were significant	(55.9%)	
 Failing to report all of a study's conditions 	(27.7%)	
 Stopping collecting data if the result is already significant 	(15.6%)	
 'Rounding off' a p value (e.g. p = .054, report p < .05) 	(22.0%)	
 Selectively reporting studies that 'worked' 	(45.8%)	
 Deciding whether to exclude data after looking at the impact 	of doing so (38.2%)	
 Reporting an unexpected finding as having been predicted f 	rom the start (27.0%)	

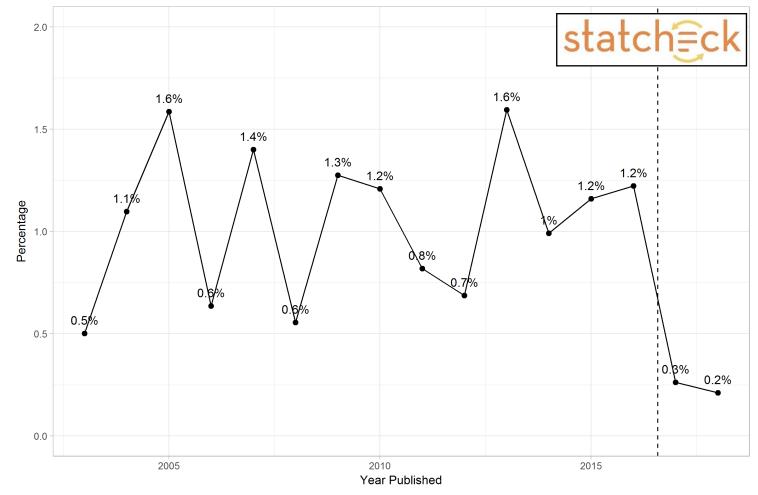
Preventing reporting errors

http://statcheck.io

- A "spellchecker" for statistics (Epskamp & Nuijten, 2014)
- > 28,800 visits since its launch in Sept. 2016
- Used in the peer review
 process of PS & JESP

Using statcheck

- To check your own papers before submitting
- To help peer review
- To do meta-research
- As a first robustness check


Upload files	(pdf, html, or docx)	:			
Browse	Bakker Wicherts 2	011.pdf		🕹 Download Resu	ilts (cs
	Upload complete				
Try to identests?	ntify and correct for o	ne-tailed			
Show 10	✓ entries		Search:		
s	ource 🔶	Statistical Reference	e 🔶 Computed p Value	Consistency	¢
1 Ba	kker Wicherts 2011	t(15) = 2.3, p = .033	0.03622	Consistent	
2 Ba	kker Wicherts 2011	Z = 6.38, p < .001	0.00000	Consistent	
3 Ba	kker Wicherts 2011	Z = 2.70, p = .007	0.00693	Consistent	

32

Preventing reporting errors

% grossly inconsistent *p*-values that can change the conclusion

To conclude

- Many researcher degrees of freedom exist
 - Preregister your study
 - Do a multiverse analysis
 - Be extremely transparent about all the research decisions that you made on the way
- It is easy to make errors
 - Use statcheck!

References and further reading

- John, L. K., Loewenstein, G., & Prelec, D. (2012). Measuring the prevalence of questionable research practices with incentives for truth telling. *Psychological science*, 23(5), 524-532.
- Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. *Science*, 349(6251), aac4716-aac4716.
- Fanelli D (2010) "Positive" Results Increase Down the Hierarchy of the Sciences. PLOS ONE 5(4): e10068. <u>https://doi.org/10.1371/journal.pone.0010068</u>
- Bakker, M., & Wicherts, J. M. (2011). The (mis)reporting of statistical results in psychology journals. Behavior Research Methods, 43(3), 666-678. doi:10.3758/s13428-011-0089-5
- Berle, D., & Starcevic, V. (2007). Inconsistencies between reported test statistics and p-values in two psychiatry journals. *International Journal of Methods in Psychiatric Research*, *16*(4), 202-207. doi:10.1002/mpr.225
- Garcia-Berthou, E., & Alcaraz, C. (2004). Incongruence between test statistics and P values in medical papers. BMC Medical Research Methodology, 4:13. doi:10.1186/1471-2288-4-13
- Nuijten, M. B., Hartgerink, C. H. J., Van Assen, M. A. L. M., Epskamp, S., & Wicherts, J. M. (2015). The prevalence of statistical reporting errors in psychology (1985-2013). *Behavior Research Methods*. Retrieved from <u>https://osf.io/e9qbp/</u>. doi:10.3758/s13428-015-0664-2
- Epskamp, S., & Nuijten, M. B. (2018). statcheck: Extract statistics from articles and recompute p-values (1.3.1) [R package]. Retrieved from <u>https://cran.r-project.org/web/packages/statcheck/index.html</u>.
- Heirene, R., LaPlante, D., Louderback, E. R., Keen, B., Bakker, M., Serafimovska, A., & Gainsbury, S. M. (2021, July 16). Preregistration specificity & adherence: A review of preregistered gambling studies & cross-disciplinary comparison. https://doi.org/10.31234/osf.io/nj4es

References and further reading

- Crüwell S, Evans NJ. Preregistration in Complex Contexts: A Preregistration Template for the Application of Cognitive Models. 2019, December 7. https://doi.org/10.31234/osf.io/2hykx
- Flannery J. fMRI Preregistration Template. 2018. Retrieved from https://osf.io/dvb2e/
- Haven TL, Van Grootel DL. Preregistering qualitative research. Accountability in Research. 2019;26(3):229-244.
- Claesen A, Gomes SLBT, Tuerlinckx F, Vanpaemel W. Preregistration: Comparing Dream to Reality. <u>https://doi.org/10.31234/osf.io/d8wex</u>. 2019, May 9.
- Bakker, M., Veldkamp, C. L. S., van Assen, M. A. L. M., Crompvoets, E. A. V., Ong, H. H., Nosek, B. A., . . . Wicherts, J. M. (2020; in press). Ensuring the quality and specificity of preregistrations. Plos Biology. doi:10.31234/osf.io/cdgyh
- Chambers, C. D. (2013). Registered reports: A new publishing initiative at Cortex. *Cortex, 49*(3), 609-610. Retrieved from http://www.sciencedirect.com/science/article/pii/S0010945212003735. doi:10.1016/j.cortex.2012.12.016
- Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The preregistration revolution. *Proceedings of the National Academy of Sciences*, *115*(11), 2600-2606. doi:10.1073/pnas.1708274114
- Wicherts, J. M., Veldkamp, C. L. S., Augusteijn, H. E. M., Bakker, M., van Aert, R. C. M., & Van Assen, M. A. L. M. (2016). Degrees of freedom in planning, running, analyzing, and reporting psychological studies. A checklist to avoid p-hacking. *Frontiers in psychology, 7*, 1832. doi:10.3389/fpsyg.2016.01832
- Van den Akker, O., Weston, S. J., Campbell, L., Chopik, W. J., Damian, R. I., Davis-Kean, P., ... Bakker, M. (2019, November 20). Preregistration of secondary data analysis: A template and tutorial. <u>https://doi.org/10.31234/osf.io/hvfmr</u>
- Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing Transparency Through a Multiverse Analysis. *Perspectives on psychological science : a journal of the Association for Psychological Science*, *11*(5), 702–712. <u>https://doi.org/10.1177/1745691616658637</u>
- Simonsohn, Uri and Simmons, Joseph P. and Nelson, Leif D., Specification Curve: Descriptive and Inferential Statistics on All Reasonable Specifications (October 29, 2019). Available at SSRN: <u>https://ssrn.com/abstract=2694998</u> or <u>http://dx.doi.org/10.2139/ssrn.2694998</u>

